
Carbon Savings + Sim Theory’s
Thunder SDK: A Case Study
Executive Summary
In November 2025, Sim Theory set out to show how much carbon emissions can be reduced by
integrating Thunder SDK into a compute-intensive application on commonly-available cloud and
on-premise server infrastructure.

The test was conducted on-premises with three hardware configurations. Sim Theory selected these
configurations because they correspond to a wide variety of common processing scenarios. The
top-tier system uses the same CPU architecture and memory as modern, compute-optimized,
high-performance cloud data center offerings. Mid-tier testing was done on a system equivalent to a
slightly below average compute-optimized cloud instance. Our low-tier system is equivalent to an
average office desktop capable of general purpose compute loads. Testing was done on on-premise
hardware as cloud providers do not make total power draw or specific consumption statistics available
to customers.

The Results
After integration with Thunder SDK, the test application completed the same work in around 1/10th of
the time and cut carbon emissions by an average of 88.5%. Carbon savings are realized by using
Thunder SDK to harness the entire power of the CPU to complete the work in a significantly shorter
period of time.

Time and Carbon Savings with Sim Theory’s Thunder SDK

 Time Savings Carbon Savings

Top-Tier 96.7% 93.1%

Mid-Tier 91.4% 84.6%

Low-Tier 90.9% 87.8%

1

Hypothesis
Sim Theory delivers significant carbon footprint reductions across both cloud and on-premise hardware
when we use Thunder SDK to maximize the parallel execution of work on high-performance computing
tasks such as AI, digital twins, engineering simulations, and media trans-coding. We expect to see a
higher power draw by the CPU when it is operating at near-full capacity, but we expect the overall
power requirements to shrink substantially as the CPU is processing the job for a much shorter period
of time.

Testing
The testing process involved resizing 4,578 image files totaling 19.29GB. The files were each originally
4k by 4k pixels and were resized down to 100 by 100 pixels while maintaining the existing aspect ratio.
The output format was png. Additionally, EXIF and XMP data was extracted if it was present in the
original image.

magick.NET1 was the application Sim Theory chose to complete this work. It is a commonly used image
manipulation package which leverages the powerful ImageMagick2 image manipulation library. It was
selected due to the extensive feature set provided and the ease of integrating Thunder SDK.
magick.NET also allows Sim Theory to design a real-world test of Thunder SDK cross-language
bindings.

The test was run twice per system, once using the default threading behavior of magick.NET and once
using Thunder SDK to schedule work across up to 85% of the total available threads. Testing was
limited to 85% of the total available threads so as not to interfere with basic operating system function.

Integration
The work necessary to integrate Thunder SDK with the project source code was what Sim Theory
refers to as a basic, high-level integration.

➔​ The pre-compiled Thunder SDK was placed next to the existing project structure.
➔​ Only the publicly available features and APIs of magick.NET were used.
➔​ Sim Theory’s optimized concurrency runtime library was integrated by adding the appropriate

paths and using the STI namespace.
➔​ A small library was written to manage application input and output and to set up the Sim Theory

Scheduler to execute work in parallel.
➔​ The testing data was highly parallelizable without data dependencies to define.
➔​ Thunder SDK contains C# bindings and magick.NET is implemented in C#. Neither code

boundaries or data had to be managed.

2 https://imagemagick.org/index.php
1 https://github.com/dlemstra/Magick.NET

2

https://imagemagick.org/index.php
https://github.com/dlemstra/Magick.NET

Results

Top-Tier Results
The top-tier system used for testing was on loan from AMD and was an:

➔​ AMD Ryzen Threadripper PRO 7955WX 16-Core3 Processor @ 4.5GHz, Windows 11 system with

128GB of DDR5 RAM
➔​ It is most equivalent to a c7a.8xlarge AWS instance.

This processor was chosen for testing specifically because it uses the Zen 4 architecture, which is the
same architecture used in the EPYC server CPUs used by Amazon, Google, IBM, Microsoft, and Oracle
in their high-performance cloud computing infrastructure. Additionally, the RAM is equivalent to what is
used in that infrastructure.

Default magick.NET Results
Testing was completed using the default threading behavior of magick.NET, which consumed the
following resources during a total runtime of 21 minutes and 45.5 seconds:

 Joules​
per Second

Joules to kWh​
per Second

Total Power
Consumption kWh

Median Total Use 174.5 .000048472 .063281989

 USA​
(400 gCO2
produced ​
per kWh)

Germany​
(315 gCO2
produced​
per kWh)

Australia​
(444 gCO2
produced​
per kWh)

India​
(559 gCO2
produced​
per kWh)

World​
(473 gCO2

produced per
kWh)

Total
Carbon

Footprint4

25.313 gCO2 19.934 gCO2 28.097 gCO2 35.375 gCO2 29.932 gCO2

4 The country-specific grams of CO2 per kWh come from electricitymaps.com using the average of the last 12 months of
data. The world average of grams of CO2 comes from the 2024 average according to electricitymaps.com.

3 16 physical cores with 2 logical counts per core - 32 total cores, test ran using 28 cores

3

http://electricitymaps.com
http://electricitymaps.com

magick.Net + Thunder SDK Results
Testing was completed using Thunder SDK to distribute work across 28 threads, which took 42.6
seconds and consumed the following resources:

 Joules​
per Second

Joules to kWh​
per Second

Total Power
Consumption kWh

Median Total Use 367.5 .000102083 .004346504

Delta Between​
Default and

Thunder SDK
Increased by 193 Increased by​

.000053611
Decreased by​
.058935485

 USA​
(400 gCO2
produced ​
per kWh)

Germany​
(315 gCO2
produced​
per kWh)

Australia​
(444 gCO2
produced​
per kWh)

India​
(559 gCO2
produced​
per kWh)

World​
(473 gCO2

produced per
kWh)

Total
Carbon

Footprint5

1.74 gCO2 1.37 gCO2 1.93 gCO2 2.43 gCO2 2.06 gCO2

Total​
Reduction 23.58 gCO2 18.56 gCO2 26.17 gCO2 32.94 gCO2 27.88 gCO2

93.13% Total Carbon Savings

5 The country-specific grams of CO2 per kWh come from electricitymaps.com using the average of the last 12 months of
data. The world average of grams of CO2 comes from the 2024 average according to electricitymaps.com.

4

http://electricitymaps.com
http://electricitymaps.com

Mid-Tier Results
The mid-tier system used for testing was an:

➔​ AMD Ryzen Threadripper 2990WX 32-Core6 Processor @ 3.0GHz, Windows 10 system with

128GB of DDR4 RAM
➔​ It is most equivalent to a c5a.16xlarge AWS instance.

Default magick.NET Results
Testing was completed using the default threading behavior of magick.NET, which consumed the
following resources during a total runtime of 39 minutes and 39.9 seconds:

 Joules​
per Second

Joules to kWh​
per Second

Total Power
Consumption kWh

Median Total Use 150.1 .000041694 .099229984

 USA​
(400 gCO2
produced ​
per kWh)

Germany​
(315 gCO2
produced​
per kWh)

Australia​
(444 gCO2
produced​
per kWh)

India​
(559 gCO2
produced​
per kWh)

World​
(473 gCO2

produced per
kWh)

Total
Carbon

Footprint7

39.692 gCO2 31.257 gCO2 44.058 gCO2 55.470 gCO2 46.936 gCO2

magick.Net + Thunder SDK
Testing was completed using Thunder SDK to distribute work across 56 threads, which took 3 minutes
and 25.6 seconds and consumed the following resources:

 Joules​
per Second

Joules to kWh​
per Second

Total Power
Consumption kWh

Median Total Use 267.8 .000074389 .015292719

Delta Between​
Default and

Thunder SDK
Increased by 117.7 Increased by​

.000032695
Decreased by​
.083937265

7 The country-specific grams of CO2 per kWh come from electricitymaps.com using the average of the last 12 months of
data. The world average of grams of CO2 comes from the 2024 average according to electricitymaps.com.

6 32 physical cores with 2 logical counts per core - 64 total cores, test ran using 56 cores

5

http://electricitymaps.com
http://electricitymaps.com

 USA​
(400 gCO2
produced ​
per kWh)

Germany​
(315 gCO2
produced​
per kWh)

Australia​
(444 gCO2
produced​
per kWh)

India​
(559 gCO2
produced​
per kWh)

World​
(473 gCO2

produced per
kWh)

Total
Carbon

Footprint8

6.12 gCO2 4.82 gCO2 6.79 gCO2 8.55 gCO2 7.23 gCO2

Total​
Reduction 33.57 gCO2 26.44 gCO2 37.27 gCO2 46.92 gCO2 39.7 gCO2

84.59% Total Carbon Savings

Low-Tier Results
The low-tier system used for testing was an:

➔​ AMD Ryzen 9 6900HS 8-Core9 Processor @ 3.3GHz, Windows 11 laptop with 40GB of DDR4

RAM
➔​ It is most equivalent to a m6a.4xlarge AWS instance.

Default magick.NET Results
Testing was completed using the default threading behavior of magick.NET. which consumed the
following resources during a total runtime of 67 minutes and 52.6 seconds:

 Joules​
per Second

Joules to kWh​
per Second

Total Power ​
Consumption kWh

Median Total Use 44.23 .000012286 .050036465

9 8 physical cores with 2 logical counts per core - 16 total cores, test ran using 14 cores

8 The country-specific grams of CO2 per kWh come from electricitymaps.com using the average of the last 12 months of
data. The world average of grams of CO2 comes from the 2024 average according to electricitymaps.com.

6

http://electricitymaps.com
http://electricitymaps.com

 USA​
(400 gCO2
produced ​
per kWh)

Germany​
(315 gCO2
produced​
per kWh)

Australia​
(444 gCO2
produced​
per kWh)

India​
(559 gCO2
produced​
per kWh)

World​
(473 gCO2

produced per
kWh)

Total
Carbon

Footprint10

20.015 gCO2 15.761 gCO2 22.216 gCO2 27.970 gCO2 23.667 gCO2

magick.Net + Thunder SDK Results
Testing was completed using Thunder SDK to distribute work across 14 threads, which took 6 minutes
and 12.2 seconds and consumed the following resources:

 Joules​
per Second

Joules to kWh​
per Second

Total Power
Consumption kWh

Median Total Use 58.97 .000102083 .004346504

Delta Between​
Default and

Thunder SDK

Increased by​
14.74

Increased by​
.000089797

Decreased by​
.045689961

 USA​
(400 gCO2
produced ​
per kWh)

Germany​
(315 gCO2
produced​
per kWh)

Australia​
(444 gCO2
produced​
per kWh)

India​
(559 gCO2
produced​
per kWh)

World​
(473 gCO2

produced per
kWh)

Total
Carbon

Footprint11

2.44 gCO2 1.92 gCO2 2.71 gCO2 3.41 gCO2 2.88 gCO2

Total​
Reduction 17.58 gCO2 13.84 gCO2 19.51 gCO2 24.56 gCO2 20.78 gCO2

87.82% Total Carbon Savings

11 The country-specific grams of CO2 per kWh come from electricitymaps.com using the average of the last 12 months of
data. The world average of grams of CO2 comes from the 2024 average according to electricitymaps.com.

10 The country-specific grams of CO2 per kWh come from electricitymaps.com using the average of the last 12 months of
data. The world average of grams of CO2 comes from the 2024 average according to electricitymaps.com.

7

http://electricitymaps.com
http://electricitymaps.com
http://electricitymaps.com
http://electricitymaps.com

Sim Theory would like to acknowledge and thank AMD for partnering with us and providing test
hardware for this case study.

Author: Randy Culley, CTO
sales@simtheory.com

simtheory.com
Copyright © 2025. Simulation Theory, Inc. All Rights Reserved.

8

mailto:sales@simtheoryinc.com
http://simtheoryinc.com

	Carbon Savings + Sim Theory’s Thunder SDK: A Case Study
	Executive Summary
	The Results
	
	Hypothesis
	Testing
	Integration
	Results
	Top-Tier Results
	Default magick.NET Results
	
	magick.Net + Thunder SDK Results

	
	Mid-Tier Results
	Default magick.NET Results
	magick.Net + Thunder SDK

	Low-Tier Results
	Default magick.NET Results
	magick.Net + Thunder SDK Results

